
TDA ProgressReport42-98

N90-12794

August15, 1989

Automated Monitor and Control for
Deep Space Network Subsystems

P. Smyth
Communications Systems Research Section

This article will consider the problem of automating monitor and con trol loops

for Deep Space Network (DSN) subsystems. The purpose of the article is to give

an overview of currently available automation techniques. In particular, the article

will consider the use of standard numerical models, knowledge-based systems, and

neural networks. Among the conclusions is argued that none of these techniques
alone possess sufficient generality to deal with the demands imposed by the DSN

environment. However, the article will show that schemes that integrate the bet-

ter aspects of each approach and are referenced to a formal system model show

considerable promise--although such an integrated technology is not yet available

for implementation. The article should be of benefit to readers interested in any
aspects of DSN automation as it highlights the advantages and dangers of currently

available approaches to the automation problem. The article frequently refers to

the receiver subsystem since this work was largely motivated by experience in de-
veloping an automated monitor and control loop for the advanced receiver.

I. Introduction

Consider the problem of designing an automated mon-
itor and control loop for a DSN subsystem. This arti-
cle will refer to the "system" as the system being con-

trolled and the "loop" as the hardware or software (or
human) component which is used to monitor the system
and control its behavior. For example, a receiver is a sub-

system which is normally controlled in a relatively man-
ual manner by human operators. This article will argue
that reliance on purely manual control techniques will not
be sufficient to cope with future subsystem technologies

and an increasingly complex DSN ground station envi-
ronment. Autonomous or semiautonomous control loops
will be necessary. This article will address some basic is-
sues regarding automated monitor and control loops: how
should such loops be designed and what general princi-
ples should be used? Specifically, the problem is defined
in a very general manner using a state-space model and
evaluating current technologies such as knowledge-based
systems and neural networks in this context. The monitor
and control problem can be decomposed into four basic

subfunctions: obtain sensor data, estimate system param-
eters from the data, make decisions based on the estimated
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Table 1. Upper bound on R

for the (31,15,17) RS code

u R

16 2.74943144e-024

17 1.50775270e--024

18 4.37734673e-025

19 8.94296586e-026

20 1.44241389e-026

21 1.95423782e-027

22 2.31146419e-028

23 2.44993596e-029

24 2.37090920e-030

25 2.12446863e-031

26 1.78181347e--032

27 1.41082139e-033

28 1.06190837e-034

29 7.64152968e-036

30 5.28215447e-037
31 3.52143591e-038

Table 2. Weight distribution and its approximation

for the number of decodable words of the (3],15,17)

RS code over GF(32)

. D. (exact) D'u (approximate)

9 1.998e-

10 5.232e-

11 6.348e-

12 4.817e-
13 2.613e-

14 1.113e-

15 3.970e-

16 1.231e-

17 3.364e-

18 8.111e-

19 1.721e-

20 3.200e-

21 5.196e-

22 7.322e-

23 8.822e-

24 9.178e-

25 7.967e-

26 5.699e-

27 3.272e-

28 1.449e-

29 4.647e-

30 9.603e-

31 9.603e-
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parameters, and implement the decision by changing sys-

tem inputs. Previously reported work on station automa-

tion [1, 2] has focused on the automation of operational

procedures, namely the automation of data collection and

control implementation, the first and fourth subfunctions

listed above. Traditionally, the estimation and decision-

making subfunctions have been performed manually by

human operators. These are precisely the subfunctions

on which this article focuses, i.e., this is what is referred

to as automated monitor and control.

II. A Statement of the Problem

A simple general model of a DSN subsystem which
one wishes to control is shown in Fig. 1. Io(t) and Oo(t)

are defined as the observable inputs and outputs respec-

tively, and I_(t) and Oo(t) as the nonobservable inputs and

outputs, where t denotes time. H is the open-loop transfer

function of the system, i.e., O(t) = H(I(t)).

In addition, there is possibly an a priori system model

M. The rules of the game comprise of being given Io(t),

Oo(t), and M at time t, and trying to effect a particular
input/output transfer function H at some time t + 6t by

changing whatever subset of the inputs Io(t) one is allowed

to control. This is a very general description, and, for ex-

ample, could equally well describe an implementation of

an adaptive control loop using classical control theory, or

a human trying to perform real-time fault-diagnosis in or-

der to restore normal operating system behavior. A key

point of this article is that there is a need to be concerned
with all such levels of control. The need for modeling very

different control loops of this kind in an integrated manner
will be identified. The function of most DSN subsystems

is to deliver or process signals or data subject to some cri-

teria. Hence, the automated loop must be able to perform

a variety of functions such as performance optimization

and fault detection in order to satisfy overall system per-
formance criteria. The article will return to this point

in much greater detail later. This requirement will entail

that the loop has a model, in some form, of the system it

is trying to control.

Figure 2 shows the general feedback control scheme,

where G represents the control-loop function. For exam-

ple, if the system can be modeled accurately by closed-

form analytic solutions, then G may be implemented as

a set of equations such as a phase-locked loop (PLL) or

other such receiver structure. However, at the level of in-

terest here (namely, entire subsytems such as the receiver),
analytic closed-form solutions are not practical and it is

traditional to close the loop manually, i.e., G is a human

operator.

For two reasons the usual engineering analysis ap-

proach will not work directly on this problem: first, the

open-loop system transfer function (call it H) is often non-

linear and too complex to model accurately. Secondly, the

transfer function may vary over time and be a function of

the input variables. Remember that this is an entire sub-

system involving the interaction of hardware and software

components. Hence, the system will have a set of states

(possibly infinite). Let the state of the system at time t
be S(t). The transfer function H is then H(S(t),I(t)).

The only time when H is known exactly may be for a sub-
set of states Sn, which might be thought of as "normal

operating states." This is precisely the case for which lit-
tle or no external feedback (G in Fig. 2) is required since

internal feedback in the subsystem components (for ex-

ample in the PLL component) will automatically produce
the desired output. One is interested of course in the other

cases (S(t) _ Sn), namely, spurious system behavior due

to "non-normal" inputs, faulty components, etc.

As a concrete example, consider the receiver subsys-

tem. Receivers are designed to work specifically on a

known class of modulated signals at specific predicted fre-

quencies. Hence, Sn corresponds to the case where the

signal is at the correct position in the spectrum, of the cor-
rect modulation format, and the noise is bounded within

expected characteristics. As is well-known, achieving opti-

mal receiver performance even when all these assumptions

are true is a very non-trivial design problem. Hence, sys-

tem designers can hardly be expected to account for the

large class of spurious system states that may arise dur-

ing field operations, e.g., new noise characteristics, in-band
radio-frequency interference (RFI), problems in other sta-

tion subsystems, or system components which behave er-

roneously or fail. As previously mentioned, it has been
traditional in field environments such as the DSN to have

the human operator detect and correct spurious system

behavior using his/her knowledge of the system and the

environment. A point of this article is that manual con-
trol of this nature is neither feasible nor desirable in the

long run.

There are two primary considerations: where to place

G relative to existing subsystems and human operators

and, secondly, how to implement G. This article will pri-

marily focus on implementation issues, but will first briefly
consider the issue of where to place an automated loop

component relative to the existing DSN subsystem envi-
ronments.
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III. Basic Architectural Considerations

Consider once more Fig. 2. There are a number of pos-

sible avenues one could pursue. One could close the loop

within the box (i.e., internally in the system as shown in

Fig. 3) and let the the operators function as they currently
do, relating inputs to outputs with little information as to

the inner state of the system. This is feasible and reduces

interface problems, but may actually introduce a new set

of difficulties for the operator: the behavior of the internal

control loop may make it very difficult for the operator to

understand the behavior of the system, i.e., it is even more

difficult to operate than previous "open-loop" systems.

An alternative approach is to replace the operator en-

tirely and close the loop completely autonomously (Fig. 4).

This approach is probably not necessary for DSN sub-

systems, since it is widely acknowledged that in any au-

tomated control system operating in uncertain environ-

ments, human intervention may always be necessary in

emergency situations. A good example is that of autopilot

control schemes in commercial airliners, where emergency
situations require that the human pilots break the auto-

matic control loop.

This paradigm of semiautonomous control (Fig. 5)

introduces the important component of situation assess-

ment. In airliners, for example, for the pilot to break the

automated loop and effectively take over control, he must
be able to assess the current state of the system or the

context in which the automated control loop was acting.

This issue requires that the automated system must in

some sense be able to communicate at any time the cur-

rent state of both the system and the control loop to a

human operator. Hence, semiautonomous control entails

that the control loop contains a high-level model of the

system it is trying to control.

IV. A State-Space Model for
Automated Monitor and Control

Consider in more detail the nature of the control loop.

One can decompose the problem into two parts: deter-

mining the state of the system at time t (estimation) and

effecting some control action on the system to achieve de-

sired behavior at time t + 6t (decision). Monitoring the
state of the system is a necessary prerequisite to controlling

it, since controller actions need to be context dependent,

i.e., what is done to control the system depends on the

state of the system and the input variables (both observ-

ables and unobservables). This is the crux of the problem.

As described earlier one can define S(t) as the state of
the system at any time t, and Sn is a set of states defined as

"normal operating behavior." Hence one can define the set

of states Sn as system states indicating spurious behavior

and potentially requiring corrective control action, where

Sn is the complement of Sn over the entire set of possible

system states. The purpose of the monitor/controller G
can be restated as follows:

(1) At any given time t obtain a state estimate S of the

true state S(t) of the system, where

S= ](Io(t),Oo(t),M,h(S, Io,Oo,t)) (1)

where Io(t) and Oo(t) are the observable inputs and

outputs, M is an a priori model of the system, and

h(.) is a finite history of previous estimated states and

input and output variables.

(2) If S E Sn choose a control action to achieve a specific

set of outputs at time t + 6t in the future, by setting

Another important practical point is that in order for

the control loop G to be effective it must have access to all

of the relevant system data and be able to control system

parameters, i.e., a comprehensive sensory and effectory

system must be in place. This is a fundamental require-

ment. Subsystems should be designed initially such that
future hardware and software links to external automated

control loops can be easily and cleanly implemented, e.g.,

hardware ports, software accessibility, etc. This holds true
even if the automated loop is built into the originally de-

signed system, since at the next level of automation these

control loops will need to communicate with higher-level

systems such as a monitor and control system for an entire

ground station.

Io(t+6t)=g(S(t),M, Io(t),h(S, Io,Oo,t)) (2)

While this state estimation and transformation model

is not the only possible model, and is somewhat of a sim-

plification, it serves the purpose of giving a good insight

as to the basic nature of the problem. The first step, that

of estimating the state of the system, is quite challeng-

ing in itself since the state-space model will necessarily be

quite complex for any realistic system. This step must be

solved before proceeding to step (2), since typically control

actions are quite sensitive to context information, i.e., the
state estimate S. For example, an operator's actions on
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a receiver depend directly on what the operator perceives
the current state of the receiver to be, e.g., whether or not
the PLL is in lock or not.

The state-space model is useful because of its gener-

ality. In this framework a phase-locked loop is a very well-

specified state estimation and control scheme operating on

a signal in real-time. At the other end of the spectrum,

the human operator is implementing a much more heuris-

tic and adaptive estimation and control scheme at a much

slower rate, what one might term "human real time." One

is interested in control loops that operate between these
two extremes. The remainder of the article will examine

current technologies in the context of this state estima-
tion and control model. The possible approaches can be

divided into three broad paradigms (standard numeric al-

gorithrns, knowledge-based systems, and neural networks)
not because they form a well-defined taxonomy for model-

ing autonomous control systems, but simply because of the
widespread interest in techniques of this nature and their

potential applications. A goal of the article is to clarify to

which types of problems each approach is best suited, and

in the process debunk some common myths.

V. Standard Analysis and Algorithms

Engineers like to model systems using differential or
difference equations and then, by analysis of the mathe-

matical model, design an estimator and controller subject

to cost and performance criteria. The quality of the result-

ing control loop hinges critically on the accuracy of the as-
sumed model, e.g., whether the real noise statistics fit the

parametric model or not. By weakening the assumptions

(e.g., by using non-parametric statistical models) one can
improve the generality of the model but it then becomes

correspondingly more difficult to design the control loop.

Some systems are simply impossible to model accu-

rately using closed-form mathematical solutions alone. It

is a key point of this article that DSN subsystems fall into

this category. The advanced receiver subsystem, for ex-
ample, will be a complex mixture of interacting hardware

and software components. Clearly, at the local compo-

nent level, existing analytical models will be quite accu-

rate, e.g., the transfer function for an accumulator or an

automatic gain control (AGC) circuit. However, one is in-

terested in the global picture, how the components interact

together to determine system behavior. Direct modeling

via equations is hardly practical. For instance, how does
one combine information such as "Eo/No = 9.5 dB" and

"the board for calculating FFTs is down"?

The key point to note is that variables of interest must
be abstracted to the appropriate level of representation.

The issue of representation is critical. The model should
necessarily entail different levels of abstraction, from rel-

atively high-level system configuration concepts (such as

a board being down) down to quantitative real-time pa-

rameter estimates (such as the value of Es/No). One can

conclude that exact mathematical models have an impor-

tant role in control loops but are not sufficiently powerful

in terms of representation to meet requirements.

VI. Knowledge-Based Systems

The term "knowledge-based system" is used rather

loosely to describe any system where knowledge about the

system is explicitly represented in symbolic form, as op-

posed to being embedded in a low-level algorithm. There

is an increasing realization that any system which intends

to communicate with other agents, be they other pieces
of software or humans, needs to be able to abstract its

information to the appropriate level. In addition, explicit

knowledge representation buys the ability to modify the

control system, to update it, etc., in an efficient man-

ner. The potential value of portable, easily-modifiable

code that can be changed relatively effortlessly is enor-
mous.

A. Rule-Based Expert Systems

Rule-based expert systems have proven to be very

popular in recent years as solutions to the type of con-

trol problem discussed so far. Essentially, they attempt

to replace or augment the human operator by a program

which contains a representation of his expertise as a set
of rules. The question will be "Is this a good modeling

tool for solving the DSN automated monitor and control

problem ?"

First consider the basic characteristics of this

approach. The rules represent situation-action pairs or

symptom-diagnosis pairs based on the expert's experi-

ence. Generally this approach works well in domains where

experts do well and the domain is not particularly well-

understood at a basic theoretical level, e.g., in many med-

ical applications where basic cause and effect relationships
are not known. Conversely, a rule-based system degrades

rapidly in performance when faced with novel problems

(symptom combinations not encoded as rules) which the
expert has never encountered before. In artificial intel-

ligence, this type of rule-based representation, based on
experiential knowledge alone, is referred to as a "shal-

low" model, since it is based on simple pattern-matching
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without reference to any deeper causal domain theory.

It is important to point out that impressive results have

been achieved in real applications using rule-based systems

and that the technology is available for implementation at

present and is well-understood. What this article is try-

ing to do is to identify the limitations of the approach in
relation to a particular monitor and control problem.

With reference to Section IV, which defined the mon-

itor and control problem as a two-step procedure based on

the estimation function f( ) and decision function g(),

a rule-based implementation can be considered as follows:

effectively the functionality of f( ) and g( ) are combined

together into single condition-action pairs or rules. Hence

the rules define a heuristic mapping from system parame-
ters to control actions. In this sense the state of the system

is never formally evaluated. The consequent implications
for semiautonomous control and situation assessment are

obvious, i.e., it will be very difficult for an external agent

to take over system control in an effective manner.

Rule-based systems are not particularly appropriate
in domains where any of the following hold true:

(1) The experts have limited experiential knowledge (are

not really experts) or, indeed, there are no experts.
This latter problem arose in the advanced receiver

expert system project since the system has not been
fielded in an operations environment.

(2) There exists a well-defined domain theory, at least at
the component level, i.e., well-defined functional and

structural properties in the system exist which are

fundamental to problem diagnosis.

(3) The external environment is subject to change and,
hence, novel problems are likely.

(4) Time and procedural information are critical to rea-

soning about the domain, e.g., in setting up a link to

a spacecraft there is a definite sequence of procedu-

ral steps which occur. Rules are very inefficient at

representing procedural knowledge.

System designers are not the types of experts that

rule-based expert systems are intended to model. Their

knowledge consists of causal reasoning based on first prin-

ciples rather than the experiential situation-action pairs of

an experienced system operator. While it is true that one
can recast basic domain knowledge in the form of rules, it

tends to obscure the underlying causal domain theory, i.e.,

it is not an efficient way to represent this type of knowl-

edge. For a new system like the advanced receiver there

is no experiential or heuristic knowledge available. This

problem of designing "expert" systems without experts

is quite challenging--this article will show later how the

notions of model-based reasoning and learning algorithms

may provide useful solutions. A practical approach might
be to initially field the system with some form of intelli-

gent model-based control loop which includes a capability
for rule-based representation, and, as expertise develops,

integrate experiential rules into the loop.

Given the above observations, it is clear that rule-

based expert systems are not a very good overall model

for the problem discussed here. It is important to keep
in mind that rule-based systems were originally developed

primarily by the medical community as a consultative off-

line tool, i.e., a program with which a human interacted,

answered queries, and received recommendations. Expert

systems were never explicitly designed to operate in active,
real-time modes in domains where expertise is scarce and

reasoning from first principles is essential.

Nonetheless it is important to counter the common

myth that rule-based models require dedicated hardware

and software components to work and operate separately

from "ordinary" software on special purpose machines.

Recent trends in the application of rule-based systems

have been very much focused on integrating the rule-based

approach with standard software, e.g., rule bases can be

called by standard procedural programs, integrated with
common databases, etc. At the present time most com-

mercial shells are available in languages such as C. Hence,

the paradigm of a standard procedural control loop that
can call a function to perform rule-based reasoning (to de-

termine the value of a global context variable, perhaps),

which is written entirely in a relatively low-level language

such as C, and which can be executed by a single-chip mi-

croprocessor may be a much more useful paradigm than

relying on the conventional rule-based approach as the ba-

sic model for control loops.

B. Model-Based Reasoning

Researchers in artificial intelligence have recognized

the limitations of purely rule-based systems as outlined

above and have consequently moved on to investigating

more powerful knowledge representation techniques.

Atkinson [3] gives a useful overview of recent AI appli-
cations for monitor and control in the aerospace domain.

This is of interest since, as with the DSN subsystem prob-

lem, monitor and control of aerospace systems involves a

large amount of temporal, procedural, and first-principles

knowledge. Thenotion of model-based reasoning is loosely
based on the idea that if a reasoning system knows the
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functionandstructureofeachsystemcomponent(atsome
appropriatelevelof representation),andknowshowthese
componentsareconnectedtogether,thenbyobservingcer-
taininputandoutputsystemparametersit shouldbeable
to reasonfromfirst-principlesto infersystembehavior,
e.g.,detectthemostlikelycauseof a fault. This is an
attractiveparadigmfor thedomaindiscussedhere.Re-
searchin thisareahasprimarilybeendomain-dependent,
withperhapsthemostcommondomainbeingthatoftrou-
bleshootingelectricalcircuits[4]. A particularlynotable
application(in a differentdomain)is theLESsystem[5]
whichmonitorsandcontrolsthecriticalloadingofliquid
oxygenontothe spaceshuttleat KennedySpaceCenter
priortolaunch--thesystemhasbeenableto performfault
detectionandisolationin 10secascomparedtothe20min
takenbymanualmethods.

Model-basedreasoningisquitedifferentfromtherule-
basedexpertsystemapproachandhasbeenassociated
with theterm"deepknowledge"orcommon-sensereason-
ing. Unfortunately,from anapplicationspointof view,
therearemanyunsolvedproblemswhichremainthesub-
jectof ongoingresearch.Forexample,thecomputational
requirementscanscaleexponentiallywith thenumberof
componentsunderconsideration.Anotherproblemisthat
therehasbeenverylittle appliedresearchin thisareaand
hencethereisverylittlepracticalfeedbackavailableforthe
purposesof determiningtheappropriatelevelofgranular-
ity for suchmodels.Forexample,for a signal-processing
subsystemsuchasareceiver,shouldthemodelentailfirst-
principlesknowledgeregardinglinearsystemstheory,or is
this toodetailed?A usefuloverviewonthecurrentstate
ofresearchin applyingmodel-basedreasoningto commu-
nicationsystemsisgivenin [6].

However,despitetheunresolvedissues,it is impor-
tantto realizethat aprioriknowledgeofDSNsubsystems
oftenfallsintothismodel-basedcategory,i.e.,well-defined
componentmodelsoffunctionandstructure.Withthead-
vancedreceiver,for example,this isverymuchthecase,
butwith thescarcityof researchresultsandapplications
in thisarea(noneat all in thecommunicationsystemsdo-
mainto theauthor'sknowledge)it wasnotpossibleto ap-
plytheseideasdirectlyto theproblemat handwithinthe
resourcesavailable.Onecanconcludethat model-based
reasoningappearspromisingasausefulmodelingtoolfor
theDSNdomainandworthyoffurtherattention.

C. Artificial Intelligence and Decision Theory

There has recently been a considerable amount of

cross-disciplinary work relating AI with decision analysis

and decision theory. Decision theory and analysis grew

out of statistical decision theory and has developed a con-

siderable basis of theoretical principles and practical tech-

niques for modeling choice and decision in uncertain en-

vironments. Applications of this technique have typically

been for decisions in economic and military environments

where decision theory can render decision-making a formal

statistical modeling problem rather than a subjective pro-

cedure, e.g., an oil company may wish to decide whether or
not to commit resources to drilling an oil well in a particu-

lar location. More recently, this work has been applied to

problems which are typically within the AI domain, e.g.,

fault diagnosis or reasoning with uncertainty. The key
shift in focus has been the notion of using decision the-

ory as a theoretical model for decision by an autonomous

agent, rather than using it to analyze specific human deci-

sion scenarios. In a sense, one might say that this involves

decision synthesis rather than decision analysis.

Whether or not decision theory can be applied to the

DSN monitor and control problem remains an open ques-

tion. As with model-based reasoning, research on this

topic is still in relative infancy. Theoretically, since the

monitor and control loop discussed in this article involves

a decision element, there can be no question that decision

theory is an appropriate formal model for an autonomous

decision agent. There are two key benefits that could be

gained from using this approach:

(1)

(2)

Decision analysis emphasizes and provides many tools

for the initial structuring and modeling of the prob-

lem at hand, e.g., the use of influence diagrams, a

technique for structuring and identifying causal mod-

els. Using these techniques would formalize the initial

model-building part of the control loop design process.

The use of statistical decision theory as the basis for a

rational decision agent is particularly appealing. For

example, in an advanced receiver it may be possible to

combine several fast Fourier transform (FFT) power

spectra in a noncoherent manner. Deciding how many

spectra to average over involves a tradeoff between the
variance of the spectral estimate and the time taken

to perform the estimate, i.e., the time delay in the

control loop. Clearly this decision is very much con-

text-dependent on parameters such as carrier-to-noise

ratio and estimated carrier Doppler rate. For exam-

ple, it is more important to minimize the time-delay
when one is not in lock than when one is in lock. Util-

ity is defined as a quantitative measure of the overall
benefit or cost which accrues to the decision-maker

from a particular action/outcome pair, i.e., if he/she

decides on an action ai, and event ej subsequently oc-

curs, u(ai, ey) is a defined utility for this pair. For the
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purposes here, utility might be defined as the vari-

ance/time tradeoff associated with each action/event
pair. Rational decision-making corresponds to choos-

ing the action at: which maximizes one's expected
utility with respect to the probability space defined

over relevant events, i.e., a probability space involving
context-valued variables such as in-lock/not-in-lock.

However, as with standard algorithms and analysis,
decision theoretic models alone are not sufficiently rich as

a knowledge representation scheme to offer a stand-alone

solution. Nonetheless, there is a strong case for their in-
clusion as a solution component and their integration with

more conventional approaches.

knowledge into the network. In terms of the earlier two-
step model, the decision function g( ) is learned entirely by

the network itself, with no reference to the a priori system

model M. Neural networks are essentially "black boxes"

in that they learn and implement input/output mappings

efficiently--but their representation of this mapping is im-

plicitly embedded in a distributed manner in terms of

learned weights. Hence, for example, one cannot incor-

porate existing functional and structural knowledge about

the subsystem discussed here into the network. One can

conclude however that as a subcomponent of the overall

model, say as a nonparametric signal/RFI classifier, the

neural network approach shows significant promise pro-
vided the hardware becomes available.

VII. Neural Networks

What is a neural network? One view (from an algo-

rithm designer's perspective) is that they are highly dis-

tributed, nonlinear models for implementing function es-
timation, i.e., given input and output samples of a "black

box" the neural network can reproduce the functionality

of the "black box" in general. This view may be somewhat

narrow, but generally speaking, optimization, adaptation,

pattern recognition, etc., can all be suitably recast into the

notion of function estimation. Hence, for example, neural

networks can form the basis for computationally power-

ful, nonparametric statistical estimation tools. Indeed, it

seems that early successful applications of this technology

may be found in computationally intensive pattern recog-

nition and signal processing problems which have proven

to be difficult to model via traditional serial, linear, non-

adaptive models, e.g., speech recognition, optical character

recognition, nonlinear signal processing, adaptive control,

etc. Typically, it seems that the less one knows about

the problem solution a priori (e.g., the less one under-

stands about the noise characteristics of the problem), the

more favorably a neural solution will compare to standard
alternatives such as Markov models, Bayesian classifiers,

etc. The availability of dedicated hardware within the next

decade will be a major factor in determining the future of

neural network technology.

How do neural networks relate to the monitor and

control problem in this article? One could certainly envi-

sion possible applications in terms of real-time estimation

and adaptive control, particularly at the signal level. But

as with each of the approaches we have considered earlier, a
neural network would not be sufficient as an overall system

model. In particular, given the current understanding of

the neural approach, there is no way to incorporate a priori

VIII. Summary

The need for automating monitor and control func-

tionality in DSN subsystems is becoming more apparent

as technology (sensors and computational resources) im-
proves to the extent that operators can no longer be ex-

pected to assimilate system data and make decisions in
real time. This article has shown that in whatever man-

ner one may implement such a monitor and control loop,

it clearly needs to include a model of the system, whether

it is implicitly embedded in equations or rules, or more

formally represented in an explicit manner. The argu-

ment for a formal representation model revolves around

three facts: first, it renders the loop design problem more
tractable as it provides the reference point from which to

integrate different numeric and symbolic approaches. Sec-

ondly, it increases both the life cycle and the flexibility

of the designed software (making it easier to transfer pro-

totype systems of this nature from a research laboratory

to field implementation). Thirdly, it facilitates communi-

cation between the subsystem and higher authorities, be

they human or automated.

It is apparent that the currently available paradigms

for implementing control loops each have distinct advan-

tages, yet, for the purposes described in this article, none

are sufficiently powerful as an overall system model. It

may be conjectured from these observations that success-

ful monitor and control systems in the DSN domain will

incorporate models which integrate the more appropriate

aspects of each approach. One could envision a model-

based representation that is run using decision-theoretic

principles and that controls and calls lower-level analytic
models and neural-based estimation schemes in a context-

dependent manner. For example, in the receiver, compu-

tational resources could initially be focused on acquisition

116



(using an FFT to locate peaks in the spectrum [7]), while,
once lock is achieved, resources could be allocated to RFI

monitoring and parameter optimization.

In the short term, the issue of model-based techniques

and their integration with standard numerical models ap-
pears worthy of further investigation and application. For

example, the use of object-oriented programming tech-

niques appears to have considerable potential for imple-

menting models of this nature. Rule-based expert systems

will have their role to play, but the system implementer is

advised to be wary if the domain primarily involves tempo-

ral, procedural, or first-principles knowledge. Using rule-

based systems as a component of an overall solution seems

like a much more reasonable approach, particularly given

that (as discussed earlier) rule-based code can now be writ-
ten in "low-level" languages such as C and consequently
embedded in standard software. Neural network technol-

ogy may be applicable to specific subcomponents of the
estimation and control problem, particularly once dedi-

cated hardware becomes available. Hybrid systems, which

combine aspects of each approach appear potentially to

be the most promising avenue, but little research and/or

applications has been carried out in this arena, and hence

they appear to be more of a long-term prospect.

A final point worth noting concerns that of learning

algorithms, i.e., systems which can improve their perfor-

mance over time. A little thought will convince the reader

that, in this domain, learning may proceed much more et'-

ficiently and effectively if it is referenced to an initial sys-

tem model. A very general viewpoint is that in modeling

any system one can introduce an a priori bias (e.g., a set

of assumptions) into the model, as in Bayesian statistics.

A strong bias will only help the model if it is accurate,

whereas very weak biases will make the learning problem

much more difficult. A case in point for automated mon-

itor and control of man-made systems is that the a priori

bias, in the form of a functional and structural component
model M, is necessarily correct and accurate. Hence, in

principle, it can only improve the quality of the overall
control loop and any learning componenttherein.

IX. Conclusion

Many real-time monitor and control applications will

not be sufficiently well-modeled by rule-bases, neural net-

works, or standard algorithms oa their own. This article
reviewed the current state-of-the-art in this area and saw

that more powerful representational models are in the off-

ing. One concludes that an effective modeling technique

would be one which integrated the better aspects of each

approach by referencing them to an explicit functional and

structural model of the system. Off-the-shelf solutions of

this nature are not currently available. Hence, until such

techniques are available, system developers should choose

their monitor and control models carefully and recognize

the limitations of each particular technology.
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Fig. 2. System model with feedback control.
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Fig. 3. Internal control loop with external manual control.
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Fig. 4. Autonomous control loop.
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